
 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4555 238

SLA-aware and Cost-aware Provisioning and

Scheduling of Cloud Resources across Multiple

Data centres

Ayesha S

Student, Department of computer Science and Engineering, M.S. Ramaiah Institute of Technology (MSRIT),

Bangalore, Karnataka, India
1

Abstract: The tremendous growth in data has immensely impacted organizations. Their infrastructure and traditional

data management systems are unable to handle Big Data. They have to either invest heavily on their infrastructure or

move their Big Data analytics to Cloud where they can benefit from both on-demand scalability and contemporary data

management techniques. However, to make Cloud hosted Big Data analytics available to wider range of enterprises, we

have to carefully capture their preferences in terms of budget and service level objectives. Therefore, in this study we

propose SLA driven resource provisioning and scheduling in multiple data centre environment. The user requests in

terms of SLA (deadline and budget) are captured at an entry point from where user request user information is sent to

cloud provider. The cloud provider receives SLA constraints and user’s job details, checks all the data centres for

availability of resources and decide the data centre at which the user application can be deployed without violating the

SLA and budget constraints. Further, a pruned tree based scheduling algorithm is used to provision cloud resources and

schedule the tasks.

Keywords- Big data, Cloud Computing, Service level Agreement, multiple data centres, deadline, budget, scheduling,

pruned tree

1. INTRODUCTION

Big data gives new opportunities for enterprises although

constitutes series of challenges. The key issues are how to

analyse Big Data and convert it to information and

knowledge that possess business value. However, this

conversion is not economically viable for small to medium

enterprises (SMEs) in a traditional infrastructure setting.

The majority of SMEs are constantly looking for cutting

edge technologies and solutions to accomplish objectives

of the company more efficiently and at the minimum cost.

Cloud computing
[1]

 has led to a paradigm shift

where enterprises, rather than maintaining their own

infrastructure, started to outsource their IT and

computational needs to on-demand cloud providers.

Clouds are typically large scale virtualized data centres

hosting thousands of servers. While there are several

advantages of these virtualized infrastructures such as on-

demand scalability of resources, and pay-as-you-go model

there are still issues which prevent their widespread

adoption in clouds. In particular, for a commercial success

of this computing paradigm, the cloud data centres need to

provide a better and strict Quality of Service (QoS)

guarantees. These guarantees which are documented in the

form of Service Level Agreement (SLA) are crucial, since

only then the customers can be confident in outsourcing

their jobs to clouds.

 For organizations to adopt cloud hosted big data

analytics, we have to carefully consider their preferences

in terms of budget and services level objectives through

provisioning and scheduling the cloud resources. There are

many SLA-based Big Data computing and MapReduce

scheduling studies in the Cloud context, however only few

consider to provision Cloud resources dynamically. Most

studies have resources pre-provisioned (static) on a private

Cloud, which form a virtual cluster. We argue that Cloud

resources should be provisioned dynamically and on-

demand based on the application workload and the size of

the data. This introduces new challenges, namely: a) how

many and which type of cloud resources to provision; b)

which data centre to select within a cloud provider for a

given request with budget and deadline constraints.

Our major contributions are summarized as follows: 1) a

model for SLA-based resource provisioning and tasks

scheduling for Big data processing in multiple data centres

cloud environment. 2) an SLA based cost minimization

algorithm to provision cloud resources and schedule the

tasks.

2. RELATED WORK

Cloud User leases resources from the Cloud Provider via

an IaaS interface. In the IaaS context, the Cloud Provider

will seek to satisfy SLAs it has agreed with Cloud Users

regarding the provision of virtual infrastructure via its data

centre resources. An SLA
[2]

 is a formal agreement between

the Cloud Provider and the Cloud User, defining in

quantitative terms the functional and non-functional

aspects of the service being offered. SLAs encompass

aspects like service availability, service performance,

security and privacy, data access, problem resolution,

change management and dispute mediation. Service Level

Objectives (SLOs) pertaining to availability (e.g., the

service is available for 99.99 % of the time within a given

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4555 239

year) and performance (e.g., the maximum query response

time is 10 ms) are directly related to resource management.

Depending on the specifics of an SLA the satisfaction of a

given SLO may be

viewed as a constraint or as an objective SLOs should be

satisfied, to the degree possible given other constraints and

objectives. The Cloud Provider may offer different service

levels to its customers and may choose to prioritize access

to resources to different customer groups depending on the

nature of their SLAs.

Most existing schedulers and frameworks do not

consider budget as a constraint although they help in

efficiently running a MapReduce job in Cloud

environments. In addition, the majority of the

implementations are Hadoop-based and use Hadoop

default scheduling algorithms to schedule jobs on Clouds.

Nevertheless, Hadoop scheduling algorithms were

designed for clusters of homogeneous machines, which is

not applicable for Cloud heterogeneous resources.

Palden Lama, Xiaobo Zhou
[3]

 propose and

develop AROMA, a system that automates the allocation

of heterogeneous Cloud resources and configuration of

Hadoop parameters for achieving quality of service goals

while minimizing the incurred cost. It addresses the

significant challenge of provisioning ad-hoc jobs that have

performance deadlines in Clouds through a novel two-

phase machine learning and optimization framework. By

this Customers may suffer from a lack of performance

guarantee and increased cost of leasing the cloud

resources.

Wei Zhang propose MIMP
[4]

 Deadline and

Interference Aware Scheduling of Hadoop Virtual

Machines which consists of two schedulers: one in the

virtualization layer designed to minimize interference on

high priority interactive services, and one in the Hadoop

framework that helps batch processing jobs meet their own

performance deadlines. This approach uses performance

models to match Hadoop tasks to the servers that will

benefit them the most, and deadline-aware scheduling to

effectively order incoming jobs. The combination of these

schedulers allows data centre administrators to safely mix

resource intensive Hadoop jobs with latency sensitive web

applications, and still achieve predictable performance for

both.

Min Li propose, CAM
[5]

, a cloud platform that

provides an innovative resource scheduler particularly

designed for hosting MapReduce applications in the cloud.

CAM reconciles both data and VM resource allocation

with a variety of competing constraints, such as storage

utilization, changing CPU load and network link

capacities. CAM uses a flow-network based algorithm that

is able to optimize MapReduce performance under the

specified constraints.

Foued Jrad, present a multi-dimensional resource

allocation scheme
[6]

 to automate the deployment of data-

intensive large scale applications in Multi-Cloud

environments. The scheme applies a two level approach in

which the target Clouds are matched with respect to the

Service Level Agreement (SLA) requirements and user

payment at first and then the application workloads are

distributed to the selected Clouds using a data locality

driven scheduling policy.

In our study, we considering SLA and cost as

main factors such that cloud provider satisfy the user

request and provision and schedule the cloud resources for

Big data application.

3. ARCHITECTURE

The proposed architecture is depicted in Fig 1.

To pave the way for organizations to adopt Cloud-hosted

Big Data analytics, we have to carefully consider their

preferences in terms of budget and service level objectives.

The major components are :

User Request: Enterprises sending their application and

SLA constraints.

Entry point: Capturing all the user preferences in terms of

application length, SLA objectives (budget and deadline)

and send this information to the cloud provider.

Cloud provider: Receives all the data from the user.

Admission control: in each data centre check whether it

can satisfy the user request without violating SLA

constraints.

VMscheduler: provision the cloud resources and schedule

the task.

Fig. 1. Proposed Architecture

4. SYSTEM MODEL

4.1 User Request Model

User request (UR) model (shown in Equation 1) consists

of: SLA objectives (SLO) and Job (J). Each SLO

includes: Budget (B) and Deadline (DL).

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4555 240

UR = {SLO, J} (1)

SLO = {B,DL} (2)

An application/job (J) (shown in Equation 3) consists of a

DSource, a set of tasks (Task). Each Task consists of Input

Data Size (IDSize), the required million CPU instructions

(MI), and the size of the output data (OPSize) . Each Task

has the required instructions in million instructions (MI).

J = { DSource, [Task]} (3)

Task = {IDSize,MI,OPSize} (4)

4.2 Cloud provider Model

The Cloud provider model (shown in Equation 5) consist

of: a set of data centers (Dcenter), a set of data sources

(DSource), a matrix (MTVM) that shows throughputs between

a virtual machine type and other types of all data centers in

megabits per second (mbps), and a matrix (MTDSource) that

shows throughputs between a data source and a virtual

machine type in megabits per second (mbps). Each DSource

has a cost for transferring the data from it (CTDSource) per

terabyte. Each data center has a set of virtual machine

types (VM). Each virtual machine type has: cost of leasing

(CLVM) per hour, the cost of transferring the data from

it(CTVM) per terabyte, the performance of the virtual

machine (MIPS) in million instructions per second.

CP = { [DSource],[Dcenter],[MTVM],[MTDSource]} (5)

Dcenter = {[VM]} (6)

VM = {LCVM,CTVM,MIPS} (8)

DSource = {CTDSource} (9)

The objective is to satisfy the SLA requirements of the

user while minimizing the total cost. The total cost of

running the job is denoted as TotalC. Given that total of n

machines and m data sources are used, the TotalC can be

computed as shown in Equation 10 where LP is the leasing

period for a virtual machine and TotalDVM and

TotalDDSource are total data in terabyte transferred from a

machine and a data source respectively. The total

execution time for running the job is denoted as: ExTime,

which is the total time of executing a task and transferring

the data in and out from data centers.

TotalC =∑
n
i=1 LCVM i* LPVM i+ CTVMi * TotalDVMi +

∑
m

j=1 CTDSource j* TotalDDSource j (10)

the SLA requirements consist of Budget (B) and Deadline

(DL). As a result, algorithms’objective is given as:

Min (TotalC) Subject to TotalC < B and ExTime < DL

 (11)

TABLE I

IMPORTANT NOTATIONS

5.ALGORITHM

The provisioning and scheduling problem is a

multidimensional knapsack problem that was shown to be

NP-complete. To tackle the problem, one may consider a

greedy algorithm. However, it cannot be directly adopted

as it is not capable of satisfying the budget constraint. In

addition, it is important to emphasize that the optimization

algorithms are required to both determine what is the best

set of Cloud resources to provision and also how to

schedule tasks on those resources.

5.1 Standard Trees

Fig 2 illustrates an example of a constructed Standard Tree

for two tasks (Task#1 and Task#2) and two VM types (L

for Large VM and XL for X.Large VM). The depth

(levels) of the tree is the total number of tasks (Task#1 and

Task#2 in Fig 2), while the breadth (branches) is the total

number of tasks multiplied by the number of VM

instances. Therefore, in each level of the tree, each node is

a VM type that can be selected for a task execution. The

number of branches of all nodes are the same, which is the

number of tasks multiplied by the number of VM

instances. The reason why the Standard Tree is constructed

in this way is that we need to cover all of the possibilities

for scheduling tasks. For example, in Fig 2 we have two

tasks and two type of VMs. As a result, we have four

branches under each node. This can be considered as a

disadvantage in the Standard Tree as it grows

exponentially as number of tasks and VM instances

increases.Standard Tree is sorted by cost ascending from

left to right, so it will start consolidating all tasks into the

cheapest virtual machine, which is the most left leaf

solution. If that solution does not satisfy the deadline

constraint it schedule one of the tasks to the next cheapest

virtual machine. However, if the budget is violated the

traversing process will stop with no solution found. An

example of a solution set/vector is the the third leaf node

in Fig 2 (v ={L1,XL1}), which means that the first task

willbe scheduled in a Large VM L1, and the second task in

an X.Large VM XL1.

Dcenter Set of Data centers

DSource Set of data sources

MTVM A matrix that shows throughputs between

a virtual machine type and other types of

all data centers in megabits per second
(mbps)

MTDSource A matrix that shows throughputs between

a data source and a virtual

machine type in megabits per second

(mbps)

CTDSource A cost for transferring the data from Data

source per terabyte

 VM virtual machine types

LCVM Cost of leasing VM per hour

CTVM Cost of transferring the data from VM per

terabyte

TotalC The total cost of running the job

TotalDVM Total data in terabyte transferred from a

machine and a data

Source

TotalDDSource Total data in terabyte transferred from a

data
Source

ExTime Total execution time for running the job

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4555 241

Fig. 2. An example of a Standard Tree with two tasks.

Fig. 3. An Example of pruned tree used algorithm with two task

5.2 Pruned Tree

Fig 3 illustrates an example of a constructed Pruned tree

for two tasks (Task#1 and Task#2) and two types of VM

(L for Large VM and XL for X.Large VM). We managed

to reduce the size of the tree compared to the Standard

Tree. Similar to the Standard Tree, the depth (levels) of the

tree is the total number of tasks. However, the breadth in

Pruned Tree is different than the Standard Tree. As shown

in Fig 2 and 3, L2 is eliminated from children of the root

node. The reason is that there is no difference in cost and

execution time of scheduling the first task in L1 compared

to L2. Similarly, XL2 (and generally for root children, all

instances of each specific VM Type except one) is

eliminated. The rest of the nodes are built from: 1) the set

of nodes in the path from the root to the current node, and

2) an extra VM instance from each VM type, where the

maximum number of VM instances to be added from each

type is the number of tasks. As illustrated in Fig 3 node

branches are not of the same root branches, not like

Standard Tree branches. The path will be selected as an

optimal solution once it does not violate the SLA

constraints. In summary the solution space of Pruned Tree

is considerably smaller in size compared to Standard tree,

as out of VM instances with similar performance, we have

only kept one and removed the others when it makes no

difference in total cost and execution time. Traversing the

Pruned Tree is similar to the Standard Tree, as nodes are

sorted by cost ascending from left to right. Hence, it will

start consolidating all tasks into the cheapest VM (i.e the

most left leaf solution). If that solution does not satisfy the

deadline SLA objective; it moves one task to the next

cheapest virtual machine, and so on. However, if the

budget SLA objective is violated at any time the traversing

will stop and return no solution is found. An example of a

solution set/vector is the fifth leaf node in Fig 3 (v =

{XL1;XL1}) the first task and the second task will be

scheduled in the same X.Large VM XL1.

5.3 Algorithm for Provisioning and Scheduling

Algorithm 1: Branch and bound algorithm on a Pruned

Tree sorted by cost

Input: Request (R) = {SLO, J}

Output: Scheduling vector v

1 foreach vm from each type of VM do

2 vectors ← vectors+ Search({vm},null) ;

3 end

 ISSN (Online) 2278-1021
ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 5, May 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4555 242

4 return Min(vectors); Search (currentBranch, path)

5 foreach vm of currentBranch do

6 newPath ← path + vm ;

7 T← GetT(newPath) ;

8 C ←GetC(newPath) ;

9 if T < D & C < B then

10 if is in leaf then

11 return newPath ;

12 else

13 nextBranch ←newPath;

14 Add to nextBranch one VM

instance from each type ;

15 return Search(nextBranch, newPath);

16 end

17 end

18 end

19 end

Branch and Bound algorithm for a Pruned Tree : It uses a

recursive function (Search) to find a solution. The Search

function is called on each node except leaf nodes and its

inputs are the current branch nodes (currentBranch) and

the path solution vector. The core functionality of this

recursive function is to iterate on each node of

currentBranch and return path as an optimal solution if it is

a leaf node and it does not violate the constraints, or call

Search if it is not a leaf node and it does not violate the

constraints. However, the node will simply be skipped if it

violates any of constraints. To find a solution with the

minimum cost, the Pruned Tree is sorted by cost ascending

from left to right, so it will start consolidating all tasks into

the cheapest virtual machine, which is the most left leaf

solution. If that solution does not satisfy the objectives, it

evaluates the next cheapest solution.

6 CONCLUSION AND FUTURE WORK

In this paper we discussed the problem of provisioning and

scheduling Cloud resources for Big Data analytics. To

pave the way for organizations to adopt Cloud-hosted Big

Data analytics, we carefully capture the user preferences in

terms of budget and service level objectives then

considering these we proposed an efficient architecture

and algorithm to provision resources and schedule tasks

using Pruned tree such that the schedule does not violate

SLA constraints.

For future work, proposed algorithm need to be

implemented and simulation need to be performed using

CloudSim which is an extensible simulation toolkit that

enables modelling and simulation of cloud computing

systems. And gathering the results by doing exhaustive

experiments and comparing the results with existing

algorithms.

REFERENCES
[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”

NIST special publication, vol. 800, p. 145, 2011.

[2] Brendan Jennings Rolf Stadler, “Resource Management in Clouds:
Survey and Research Challenges”, Springer Science+Business Media

New York 2014.

[3] Palden Lama, Xiaobo Zhou,” AROMA: Automated Resource
Allocation and Configuration of MapReduce Environment in the Cloud”

[4] Wei Zhang, Sundaresan Rajasekaran, Timothy Wood, Mingfa Zhu,”

MIMP: Deadline and Interference Aware Scheduling of Hadoop
Virtual Machines”

[5] Min Li, Dinesh Subhraveti, Ali R. Butt, Aleksandr Khasymski,

Prasenjit Sarkar,,”CAM: A Topology Aware Minimum Cost Flow
Based Resource Manager for MapReduce Applications in the Cloud”

[6] Foued Jrad, JieTao, IvonaBrandic, AchimStreit, Karlsruhe,” Multi-

dimensional Resource Allocation for Data-intensive Large-scale

Cloud Applications”

