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Abstract: The tremendous growth in data has immensely impacted organizations. Their infrastructure and traditional 

data management systems are unable to handle Big Data. They have to either invest heavily on their infrastructure or 

move their Big Data analytics to Cloud where they can benefit from both on-demand scalability and contemporary data 

management techniques. However, to make Cloud hosted Big Data analytics available to wider range of enterprises, we 

have to carefully capture their preferences in terms of budget and service level objectives. Therefore, in this study we 

propose SLA driven resource provisioning and scheduling in multiple data centre environment. The user requests in 

terms of SLA (deadline and budget) are captured at an entry point from where user request user information is sent to 

cloud provider. The cloud provider receives SLA constraints and user’s job details, checks all the data centres for 

availability of resources and decide the data centre at which the user application can be deployed without violating the 

SLA and budget constraints. Further, a pruned tree based scheduling algorithm is used to provision cloud resources and 

schedule the tasks. 
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1. INTRODUCTION 

Big data gives new opportunities for enterprises although 

constitutes series of challenges. The key issues are how to 

analyse Big Data and convert it to information and 

knowledge that possess business value. However, this 

conversion is not economically viable for small to medium 

enterprises (SMEs) in a traditional infrastructure setting. 

The majority of SMEs are constantly looking for cutting 

edge technologies and solutions to accomplish objectives 

of the company more efficiently and at the minimum cost. 

Cloud computing
[1]

 has led to a paradigm shift 

where enterprises, rather than maintaining their own 

infrastructure, started to outsource their IT and 

computational needs to on-demand cloud providers. 

Clouds are typically large scale virtualized data centres 

hosting thousands of servers. While there are several 

advantages of these virtualized infrastructures such as on-

demand scalability of resources, and pay-as-you-go model 

there are still issues which prevent their widespread 

adoption in clouds. In particular, for a commercial success 

of this computing paradigm, the cloud data centres need to 

provide a better and strict Quality of Service (QoS) 

guarantees. These guarantees which are documented in the 

form of Service Level Agreement (SLA) are crucial, since 

only then the customers can be confident in outsourcing 

their jobs to clouds. 

 For organizations to adopt cloud hosted big data 

analytics, we have to carefully consider their preferences 

in terms of budget and services level objectives through  

 

provisioning and scheduling the cloud resources. There are 

many SLA-based Big Data computing and MapReduce  

 

scheduling studies in the Cloud context, however only few 

consider to provision Cloud resources dynamically. Most 

studies have resources pre-provisioned (static) on a private 

Cloud, which form a virtual cluster. We argue that Cloud 

resources should be provisioned dynamically and on-

demand based on the application workload and the size of 

the data. This introduces new challenges, namely: a) how 

many and which type of cloud resources to provision; b) 

which data centre to select within a cloud provider for a 

given request with budget and deadline constraints. 

Our major contributions are summarized as follows: 1) a 

model for SLA-based resource provisioning and tasks 

scheduling for Big data processing in multiple data centres 

cloud environment. 2) an SLA based cost minimization 

algorithm to provision cloud resources and schedule the 

tasks.  
 

2. RELATED WORK 

Cloud User leases resources from the Cloud Provider via 

an IaaS interface. In the IaaS context, the Cloud Provider 

will seek to satisfy SLAs it has agreed with Cloud Users 

regarding the provision of virtual infrastructure via its data 

centre resources. An SLA
[2]

 is a formal agreement between 

the Cloud Provider and the Cloud User, defining in 

quantitative terms the functional and non-functional 

aspects of the service being offered. SLAs encompass 

aspects like service availability, service performance, 

security and privacy, data access, problem resolution, 

change management and dispute mediation. Service Level 

Objectives (SLOs) pertaining to availability (e.g., the 

service is available for 99.99 % of the time within a given 
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year) and performance (e.g., the maximum query response 

time is 10 ms) are directly related to resource management. 

Depending on the specifics of an SLA the satisfaction of a 

given SLO may be  

viewed as a constraint or as an objective SLOs should be 

satisfied, to the degree possible given other constraints and 

objectives. The Cloud Provider may offer different service 

levels to its customers and may choose to prioritize access 

to resources to different customer groups depending on the 

nature of their SLAs. 

Most existing schedulers and frameworks do not 

consider budget as a constraint although they help in 

efficiently running a MapReduce job in Cloud 

environments. In addition, the majority of the 

implementations are Hadoop-based and use Hadoop 

default scheduling algorithms to schedule jobs on Clouds. 

Nevertheless, Hadoop scheduling algorithms were 

designed for clusters of homogeneous machines, which is 

not applicable for Cloud heterogeneous resources. 

Palden Lama, Xiaobo Zhou
[3]

 propose and 

develop AROMA, a system that automates the allocation 

of heterogeneous Cloud resources and configuration of 

Hadoop parameters for achieving quality of service goals 

while minimizing the incurred cost. It addresses the 

significant challenge of provisioning ad-hoc jobs that have 

performance deadlines in Clouds through a novel two-

phase  machine learning and optimization framework. By 

this Customers may suffer from a lack of performance 

guarantee and increased cost of leasing the cloud 

resources. 

Wei Zhang propose MIMP
[4]

 Deadline and 

Interference Aware Scheduling of Hadoop Virtual 

Machines which consists of two schedulers: one in the 

virtualization layer designed to minimize interference on 

high priority interactive services, and one in the Hadoop 

framework that helps batch processing jobs meet their own 

performance deadlines. This approach uses performance 

models to match Hadoop tasks to the servers that will 

benefit them the most, and deadline-aware scheduling to 

effectively order incoming jobs. The combination of these 

schedulers allows data centre administrators to safely mix 

resource intensive Hadoop jobs with latency sensitive web 

applications, and still achieve predictable performance for 

both. 

Min Li propose, CAM
[5]

, a cloud platform that 

provides an innovative resource scheduler particularly 

designed for hosting MapReduce applications in the cloud. 

CAM reconciles both data and VM resource allocation 

with a variety of competing constraints, such as storage 

utilization, changing CPU load and network link 

capacities. CAM uses a flow-network based algorithm that 

is able to optimize MapReduce performance under the 

specified constraints. 

Foued Jrad, present a multi-dimensional resource 

allocation scheme
[6]

 to automate the deployment of data-

intensive large scale applications in Multi-Cloud 

environments. The scheme applies a two level approach in 

which the target Clouds are matched with respect to the 

Service Level Agreement (SLA) requirements and user 

payment at first and then the application workloads are 

distributed to the selected Clouds using a data locality 

driven scheduling policy. 

In our study, we considering SLA and cost as  

main factors such that cloud provider satisfy the user 

request and provision and schedule the cloud resources for 

Big data application. 

 

3. ARCHITECTURE 

The proposed architecture is depicted in Fig 1. 

To pave the way for organizations to adopt Cloud-hosted 

Big Data analytics, we have to carefully consider their 

preferences in terms of budget and service level objectives. 

The major components are :  

User Request: Enterprises sending their application and 

SLA constraints. 

Entry point: Capturing all the user preferences in terms of 

application length, SLA objectives (budget and deadline) 

and send this information to the cloud provider. 

Cloud provider: Receives all the data from the user. 

Admission control: in each data centre check whether it 

can satisfy the user request without violating SLA 

constraints. 

VMscheduler: provision the cloud resources and schedule 

the task. 

 
Fig. 1. Proposed Architecture 

4. SYSTEM MODEL 

4.1 User Request Model 

User request (UR) model (shown in Equation 1) consists 

of: SLA objectives (SLO) and  Job (J). Each SLO 

includes: Budget (B) and Deadline (DL). 
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UR = {SLO, J}   (1) 

SLO = {B,DL}   (2)   

An application/job (J) (shown in Equation 3) consists of a 

DSource, a set of tasks (Task). Each Task consists of  Input 

Data Size (IDSize), the required million CPU instructions 

(MI), and the size of the output data (OPSize ) . Each Task 

has the required instructions in million instructions (MI).  

 

J = { DSource, [Task]}  (3) 

Task = {IDSize,MI,OPSize}            (4) 

 

4.2 Cloud provider Model  

The Cloud provider model (shown in Equation 5) consist 

of: a set of data centers (Dcenter), a set of data sources 

(DSource), a matrix (MTVM) that shows throughputs between 

a virtual machine type and other types of all data centers in 

megabits per second (mbps), and a matrix (MTDSource) that 

shows throughputs between a data source and a virtual 

machine type in megabits per second (mbps). Each DSource 

has a cost for transferring the data from it (CTDSource) per 

terabyte. Each data center has a set of virtual machine 

types (VM). Each virtual machine type has: cost of leasing 

(CLVM) per hour, the cost of transferring the data from 

it(CTVM) per terabyte, the performance of the virtual 

machine (MIPS) in million instructions per second. 

 

CP = { [DSource],[Dcenter],[MTVM],[MTDSource]}    (5) 

Dcenter = {[VM]}                                                   (6) 

VM = {LCVM,CTVM,MIPS}                                 (8) 

DSource = {CTDSource}        (9) 

 

The objective is to satisfy the SLA requirements of the 

user while minimizing the total cost. The total cost of 

running the job is denoted as TotalC. Given that total of n 

machines and m data sources are used, the TotalC can be 

computed as shown in Equation 10 where LP is the leasing 

period for a virtual machine and TotalDVM and 

TotalDDSource are total data in terabyte transferred from a 

machine and a data source respectively. The total 

execution time for running the job is denoted as: ExTime, 

which is the total time of executing a task and transferring 

the data in and out from data centers. 

 

TotalC =∑
n
i=1 LCVM i* LPVM i+ CTVMi * TotalDVMi + 

 

∑
m

j=1 CTDSource j*  TotalDDSource j         (10)
 

    

the SLA requirements consist of Budget (B) and Deadline 

(DL). As a result, algorithms’objective is given as: 

 

Min (TotalC) Subject to TotalC < B and ExTime < DL 

      (11) 
 

 
 

 

 
 

 

 
 

TABLE I 

IMPORTANT NOTATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.ALGORITHM 

The provisioning and scheduling problem is a 

multidimensional knapsack problem that was shown to be 

NP-complete. To tackle the problem, one may consider a 

greedy algorithm. However, it cannot be directly adopted 

as it is not capable of satisfying the budget constraint. In 

addition, it is important to emphasize that the optimization 

algorithms are required to both determine what is the best 

set of Cloud resources to provision and also how to 

schedule tasks on those resources. 

5.1 Standard Trees 

Fig 2 illustrates an example of a constructed Standard Tree 

for two tasks (Task#1 and Task#2) and two VM types (L 

for Large VM and XL for X.Large VM). The depth 

(levels) of the tree is the total number of tasks (Task#1 and 

Task#2 in Fig 2), while the breadth (branches) is the total 

number of tasks multiplied by the number of VM 

instances. Therefore, in each level of the tree, each node is 

a VM type that can be selected for a task execution. The 

number of branches of all nodes are the same, which is the 

number of tasks multiplied by the number of VM 

instances. The reason why the Standard Tree is constructed 

in this way is that we need to cover all of the possibilities 

for scheduling tasks. For example, in Fig 2 we have two 

tasks and two type of VMs. As a result, we have four 

branches under each node. This can be considered as a 

disadvantage in the Standard Tree as it grows 

exponentially as number of tasks and VM instances 

increases.Standard Tree is sorted by cost ascending from 

left to right, so it will start consolidating all tasks into the 

cheapest virtual machine, which is the most left leaf 

solution. If that solution does not satisfy the deadline 

constraint it schedule one of the tasks to the next cheapest 

virtual machine. However, if the budget is violated the 

traversing process will stop with no solution found. An 

example of a solution set/vector is the the third leaf node 

in Fig 2 (v ={L1,XL1}), which means that the first task 

willbe scheduled in a Large VM L1, and the second task in 

an X.Large VM XL1. 

Dcenter Set of Data centers 

DSource Set of data sources 

MTVM A matrix that shows throughputs between 

a virtual machine type and other types of 

all data centers in megabits per second 
(mbps) 

MTDSource A matrix that shows throughputs between 

a data source and a virtual 

machine type in megabits per second 

(mbps) 

CTDSource A cost for transferring the data from Data 

source per terabyte 

 VM virtual machine types 

LCVM Cost of leasing  VM per hour 

CTVM Cost of transferring the data from VM  per 

terabyte 

TotalC The total cost of running the job 

TotalDVM Total data in terabyte transferred from a 

machine and a data 

Source 

TotalDDSource Total data in terabyte transferred from a 

data 
Source 

ExTime Total execution time for running the job 



 ISSN (Online) 2278-1021 
ISSN (Print)    2319-5940 

 

International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 5, May 2015 
 

Copyright to IJARCCE                                                          DOI  10.17148/IJARCCE.2015.4555                                                 241 

  

 
 

Fig. 2. An example of a Standard Tree with two tasks. 

 

Fig. 3. An Example of pruned tree used algorithm with two task

 

5.2 Pruned Tree 

Fig 3 illustrates an example of a constructed Pruned tree 

for two tasks (Task#1 and Task#2) and two types of VM 

(L for Large VM and XL for X.Large VM). We managed 

to reduce the size of the tree compared to the Standard 

Tree. Similar to the Standard Tree, the depth (levels) of the 

tree is the total number of tasks. However, the breadth in 

Pruned Tree is different than the Standard Tree. As shown 

in Fig 2 and 3, L2 is eliminated from children of the root 

node. The reason is that there is no difference in cost and 

execution time of scheduling the first task in L1 compared 

to L2. Similarly, XL2 (and generally for root children, all 

instances of each specific VM Type except one) is 

eliminated. The rest of the nodes are built from: 1) the set 

of nodes in the path from the root to the current node, and 

2) an extra VM instance from each VM type, where the 

maximum number of VM instances to be added from each 

type is the number of  tasks. As illustrated in Fig 3 node 

branches are not of the same root branches, not like 

Standard Tree branches. The path will be selected as an 

optimal solution once it does not violate the SLA 

constraints. In summary the solution space of Pruned Tree 

is considerably smaller in size compared to Standard tree, 

as out of VM instances with similar performance, we have 

only kept one and removed the others when it makes no  

 

 

difference in total cost and execution time. Traversing the 

Pruned Tree is similar to the Standard Tree, as nodes are 

sorted by cost ascending from left to right. Hence, it will 

start consolidating all tasks into the cheapest VM (i.e the 

most left leaf solution). If that solution does not satisfy the 

deadline SLA objective; it moves one task to the next 

cheapest virtual machine, and so on. However, if the 

budget SLA objective is violated at any time the traversing 

will stop and return no solution is found. An example of a 

solution set/vector is the fifth leaf node in Fig 3 (v = 

{XL1;XL1}) the first task and the second task will be 

scheduled in the same X.Large VM XL1. 

 

5.3 Algorithm for Provisioning and Scheduling 

 

Algorithm 1: Branch and bound algorithm on a Pruned 

Tree sorted by cost 

 

Input: Request (R) = {SLO, J} 

Output: Scheduling vector v 

 

1  foreach vm from each type of VM do 

2   vectors ← vectors+ Search({vm},null) ; 

3 end 
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4 return Min(vectors); Search (currentBranch, path) 

5  foreach vm of currentBranch do 

6   newPath ← path + vm ; 

7   T← GetT(newPath) ; 

8   C ←GetC(newPath) ; 

9   if T < D & C < B then 

10        if is in leaf  then 

11    return newPath ; 

12        else 

13    nextBranch  ←newPath; 

14    Add to nextBranch one      VM 

instance from each type ; 

15  return  Search(nextBranch, newPath); 

16        end 

17   end 

18  end 

19 end 

 

 

Branch and Bound algorithm for a Pruned Tree : It  uses a 

recursive function (Search) to find a solution. The Search 

function is called on each node except leaf nodes and its 

inputs are the current branch nodes (currentBranch) and 

the path solution vector. The core functionality of this 

recursive function is to iterate on each node of 

currentBranch and return path as an optimal solution if it is 

a leaf node and it does not violate the constraints, or call 

Search if it is not a leaf node and it does not violate the 

constraints. However, the node will simply be skipped if it 

violates any of constraints. To find a solution with the 

minimum cost, the Pruned Tree is sorted by cost ascending 

from left to right, so it will start consolidating all tasks into 

the cheapest virtual machine, which is the most left leaf 

solution. If that solution does not satisfy the objectives, it 

evaluates the next cheapest solution. 

 

6 CONCLUSION AND FUTURE WORK 

In this paper we discussed the problem of provisioning and 

scheduling Cloud resources for Big Data analytics. To 

pave the way for organizations to adopt Cloud-hosted Big 

Data analytics, we carefully capture the user preferences in 

terms of budget and service level objectives then 

considering these we proposed an efficient architecture 

and algorithm to provision resources and schedule tasks 

using Pruned tree such that the schedule does not violate 

SLA constraints.  

For future work, proposed algorithm need to be 

implemented and simulation need to be performed using 

CloudSim which is an extensible simulation toolkit that 

enables modelling and simulation of cloud computing 

systems. And gathering the results by doing exhaustive 

experiments and comparing the results with existing 

algorithms. 
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